
Extended Essay

Physics

“To what extent does the number of degrees of freedom in an

articulated robot manipulator influence the payload,

repeatability and work envelope?”

Word Count: 3897

Baran Usluel

i

Abstract

The objective of this project was to understand and model the relationship between the

number of degrees of freedom in an articulated robot and three factors: the payload,

repeatability, and work envelope. Currently, industries looking to implement robots into

their production lines and businesses must make a number of decisions when choosing

what type of robots to utilize. One of the most notable factors to be decided upon is the

number of degrees of freedom, as this has a pronounced effect on many of the robot’s

other characteristics. While some specialized tasks (such as lifting exceptionally heavy

objects) may be better suited by robots with an uncommon and more extreme number

of degrees of freedom, most tasks require well-rounded robots with balanced

characteristics. That is why the models developed in this investigation were used to

identify how many degrees of freedom are best for the latter type of robot.

The payload model was derived using torque calculations. The repeatability model was

calculated by applying the root-sum-squared method on the uncertainties introduced by

each of the motors, extrapolated to the robot’s end point. And finally, the work envelope

was evaluated by a MATLAB program written by the author, which uses an iterative

approach along with the concept of robotic forward kinematics to determine the number

of unique and total points that can be reached by the robot.

The ideal number of degrees of freedom was found to be 5, by numerically

approximating the intersection of the increasing and decreasing functions of the

degrees of freedom. This value matched that of commonly used industrial robots,

indicating that industries are indeed using the most balanced and optimal robots.

Word Count: 275

ii

Table of Contents

Abstract .. i

Table of Contents ...ii

Introduction ... 1

Research Topic.. 1

Theories ... 1

Definition of Terms ... 2

Thesis .. 6

Method ... 7

Calculations and Simulations .. 14

Payload .. 14

Repeatability .. 16

Work Envelope .. 18

Analysis ... 20

Conclusion .. 23

Works Cited ... 24

Appendix ... 25

MATLAB Source Code for Work Envelope Calculations .. 25

1

Introduction

Research Topic

To what extent does the number of degrees of freedom in an articulated robot

manipulator influence the payload, repeatability and work envelope?

The purpose of this extended essay is to investigate the relationship between the

number of degrees of freedom in an articulated robot manipulator (more commonly

known as a robot arm), and its three main characteristics, which are the payload,

repeatability, and work envelope.

Once the necessary models are derived, they will be used to determine what number of

degrees of freedom will yield the most balanced robot, in terms of the various

characteristics. This means that the robot will neither be incredibly strong but imprecise,

nor precise but inflexible; instead, the most uniform and optimal value will be found.

Finally, the resultant value will be compared with the number of degrees of freedom

found in the most popular industrial robots, to establish whether those robots are also

balanced, or more specialized in certain areas.

Theories

This research paper on articulated robot arms will make use of several concepts. Firstly,

the evaluation of the work envelope variable will involve robot kinematics, which is the

“analytical study of the motion of a robot manipulator” (Kucuk and Bingul). More

specifically, forward robot kinematics will be used, where each of the joint variables /

angles are taken in as input, and the position and orientation of the end-effector (end of

the robot arm) is calculated.

2

In addition, this paper will make use of the Physics concepts of torque and rotational

dynamics, when calculating the payload capabilities of the various robot arms.

And finally, geometry and trigonometry will be used, both in the derivation of the forward

kinematics solution, and also in the repeatability calculations.

Definition of Terms

Robot Manipulators

Robot manipulators are programmable machines used to move materials, parts and

tools to perform certain tasks. Robots are particularly beneficial when used to perform

unsafe, repetitive or unpleasant tasks. They can be used for material handling,

assembly, welding, painting, etc. (United States Department of Labor).

Degree of Freedom (DOF)

A degree of freedom is a single independent direction of motion in a robot manipulator.

There are three main types of degrees of freedom in robots. The first is rotation about

an axis parallel to the arm, like the human wrist. The second is linear movement, in

which a component slides in and out, or up and down, and so forth. The third is rotation

about an axis perpendicular to the arm, like the human elbow (Vex Robotics).

3

Motors

The most commonly used type of motor in robot arms is the servo motor. Industrial

servo motors have sensors that monitor position and velocity in the real-time, and they

adjust their motion based on a feedback loop. They can provide very high torques and

are ideal for most applications. Hobby servo motors are affordable and relatively light

motors that can be used for small-scale prototyping, but are not as powerful or efficient.

Payload

“A robot payload is the maximum of weight that a robot can pick up or manipulate”

(RobotWorx). The payload of a robot arm depends on various factors, such as the

design of the arm, the masses of the components, and the torque specifications of the

motors. It is one of the most important properties of a robot, as a low payload can limit

the potential uses and functions of a robot.

Work Envelope

“A robot’s work envelope is its range of movement. It is the shape created when a

manipulator reaches forward, backward, up and down” (RobotWorx). Simply put, the

Figure 1 (Ross, Fardo and Masterson)

4

work envelope is the volume of space that the robot’s end-effector can reach. The work

envelope depends on the robot’s reach length, the number of DOF, and the design of its

axes (joint configuration). “Many of the robots are designed with considerable flexibility.

Some have the ability to reach behind themselves” (RobotWorx). This is a beneficial

ability, because it means that the robot is less constrained and can make more difficult

maneuvers.

Repeatability

“[Repeatability] is the ability of a robot to return to the same position” (RobotWorx). This

is crucial for a robot, especially in an industrial setting, because poorer repeatability

results in lower quality work and products. The repeatability of a robot can be improved

through the use of sensors and feedback loops, but implementing these requires

additional resources.

Types of Robot Arms

Robot arms are classified in accordance with their design configurations. The different

configurations have a large influence on the work envelope, payload, and repeatability.

Three common configurations will be discussed:

Figure 2 (Adapted from Wysk)

5

The first configuration is called the rectangular coordinate robot. It consists of three

linear joints that move along the Cartesian coordinate system. It is ideal for manipulating

high payloads, due to its rigid structure. This configuration has little or no rotary

capabilities, limiting its work envelope and deeming it unsuitable for applications that

require complex and flexible motion (Robot Arm Configurations).

The next one is the SCARA arm. It is made up of multiple rotary joints that all rotate

around the vertical axis, and a single vertical linear joint. It has the advantage of being

vertically rigid while retaining flexibility in its horizontal motions. Nonetheless, it also has

a limited work envelope and is often not preferred (Robot Arm Configurations).

The most common robot arm configuration is the revolute configuration. Also known as

an articulated arm, it only consists of rotary joints. It is said to be anthropomorphic

because its movements and joints resemble those of the human arm (Robot Arm

Configurations). Many industrial articulated arms will have around 6 DOF, granting them

complete versatility (Ross, Fardo and Masterson). This configuration yields

considerable flexibility in regards to motion, but it is not as rigid as the other

configurations.

This research paper will be focusing on articulated robot arms, for two primary reasons:

they are the most common, especially in industrial settings; and they are particularly

prone to payload issues, which this research aims to investigate and minimize.

Unconventional, experimental designs won’t be considered here, for the sake of

simplicity and consistency. Instead, the investigated robots will be modeled after

commonly used industrial robot arms like those made by Yaskawa Motoman Robotics,

and other large automation companies.

6

Thesis

Research Topic:

To what extent does the number of DOF in an articulated robot manipulator

influence the payload, repeatability and work envelope?

Increasing the number of DOF results in a larger number of motors, meaning that the

mass of the arm itself will be greater. Additionally, each new DOF will introduce another

potentially vulnerable joint to the system, resulting in a deterioration of rigidity. This

means that the payload will decrease with each additional DOF, and the robot will not

be able to manipulate heavy loads.

Similarly, the repeatability of the movements will decrease because of the tolerances of

the individual motors, as well as the backlash on every joint. The uncertainty that is

introduced with each new motor, when extrapolated to the end-effector, may cause

significant repeatability limitations.

On the other hand, increasing the number of DOF will enlarge the work envelope (even

though the reach of the arm is constant) and give greater flexibility to the arm (such as

reaching a certain point from various angles and sides). This can be particularly

valuable in industrial settings where the arm is expected to conduct complex

movements and maneuvers.

Based on the specifications of existing commercial robot arms, it can be expected that

the ideal number of DOF for typical applications will be near 5 or 6 (RobotWorx). This

will certainly differ from one application to the next, but it should be possible to

determine a so-called ‘sweet-spot’ where the trade-offs are most balanced.

7

Method

The experimental research will consist of making calculations and running simulations.

Equations describing various factors will be derived, and simulation results will be

analyzed. The expressions for the dependent variables will be used to calculate the

optimal DOF value. The result will then be compared to the hypothesis, that the value

should be 5 or 6.

Independent Variable

The independent variable will be the number of DOF in the robot, ranging from 1 to 9.

Dependent Variables

The dependent variables will be the payload, repeatability, and work envelope.

In addition to calculating the volume of the work envelope, the flexibility of the motion

within that envelope will also be considered.

Control Variables

As it is difficult to find technical specifications for the individual components (i.e. motors,

segments) of many real-life industrial robots, the ones being considered here will be at

the hobby scale. That is why the robots will have MG 996R hobby servos for all of their

joints.

Similarly, all the robots will have a reach length of 30 centimeters, which is very small

for an industrial robot but fitting for a hobby robot with the given motor.

External sensors, feedback loops or PID (proportional-integral-derivative) control

systems will not be considered, as they are all error-correction mechanisms which

8

would defeat the purpose of the investigation, which is to find the direct relationship

between the number of DOF and factors such as repeatability.

Payload

When making payload calculations, it will be assumed that the arm is in its horizontal

reach position, as that is the worst-case scenario in which the motors experience the

greatest torque.

There will be two notable assumptions in the payload calculations. Firstly, it will be

assumed that the center of mass of the item being held by the manipulator is at the

precise location of the end-effector. This assumption must be explicitly stated because if

the item is large or has an irregular shape, then that can affect the torque of the item

and hence the payload of the robot. And secondly, it will be assumed that the mass of

the robot arm is distributed evenly along the length of the arm. This isn’t the case for

most robots, as their structures often get thinner and lighter towards the end-effector,

but this assumption will provide a convenient approximation to observe a correlation.

Work Envelope

To calculate numerical values for the work envelopes of the robots, forward kinematics

will be evaluated with MATLAB code. An iterative solution will be used, in which each of

the joint angles are repeatedly incremented by a small angle, so that they sweep from

their minimum to their maximum positions. For each of these angle combinations, the

forward kinematics will be calculated to find the end-effector’s position. Hence, every

single point that the robot arm can reach (at a certain joint precision) will be collected.

9

However, this alone will not suffice. For example, if one were to use this process on a 1

DOF robot, and then do the same for a up-scaled version of the same 1 DOF robot, the

number of points calculated would be the same, but the work envelope for the latter

should clearly be larger, indicating that this representation can be flawed. Therefore, the

coordinates of each of the calculated points will be rounded to a certain value so that

they are all aligned in a 3D grid. This will yield the number of unique points reached,

which is indeed representative of the volume of the work envelope.

In addition to the number of unique points, the total number of points reached will also

be considered. This is because when there are more degrees of freedom, the same

points will be able to be reached in more ways, meaning that the robots will have

greater flexibility; and the total number of points reached by the robots will be a fair

representation of that. This would be a meaningless measure if the robots had varying

reach lengths, but as they are constant (30 centimeters), this variable can be used.

The output of the MATLAB program is visually represented by Figure 3. The indicated

points are all the coordinates that a 3 DOF robot can reach. The colors correspond to

values of log10(V), where V is the number of different ways that the robot can reach the

given point.

10

Figure 3, Work envelope graph generated by MATLAB program

Repeatability

The repeatability of the robots will be calculated by geometrically sweeping out the

angle tolerances of the motors / encoders at each of the joints to the end-effector’s

position, and finding the root-sum-squared. It will be expressed as ±x where x is a value

in centimeters.

11

Robot Configurations

Nine different robot manipulators, with DOF ranging from 1 to 9, will be studied. These

will all have the same reach length of 30 centimeters, for consistency in the work

envelope, payload and repeatability calculations. Industrial robots typically have either 5

or 6 DOF, but ones with 4 or 7 can also be found. The robots in this paper that have

such many DOF will be designed similarly to standard industrial robot designs. The

other robots will have their joints added and removed in a manner that matches the

trend (see Figure 3 below). Note that despite the appearance of varying reach lengths in

the figure, it will be kept constant.

Figure 4, Diagram of joint configurations for DOF from 9 to 1 (where 7 to 4 are standard
configurations), rendered using OpenSCAD

1 2 3

4 5 6 789

12

Motors

The motors of the robot manipulators being considered will be modelled after MG 996R

hobby servo motors. These are small and inexpensive motors, weighing 57 grams, that

are typically used for prototyping projects.

The MG 996R servos are reported to have a stall torque

rating of 15kg-cm when powered at 6 volts (MG996R

Digital Servo Metal Gear). This value was confirmed

experimentally by attaching a 1.5kg load to the motor at

10cm from its axis of rotation; the motor held the load in

place, but was not able to move it upwards, as this is only the stall torque. The motor

wasn’t tested with heavier loads, as it appeared to be under strain, and further tests

could have caused physical damage.

The repeatability/resolution of the servo motor was not specified

by the seller. It was determined experimentally, by attaching a

link (a pen) to the motor to create a simple 1 DOF robot, as

shown in Figure 6. This small robot had a reach of 121mm. It

was programmed so that it would repeatedly rotate to various

positions, and then attempt to return to a target position, where

the offset error from the desired position would be measured. By

considering the maximum errors, a resolution of ±7mm was

found for this specific 1 DOF robot. This value was then used to

calculate the angular resolution of the motor as ±3.3 degrees.

Figure 5, MG996R hobby servo motor

Figure 6, Diagram of repeatability
measurement setup

Link of length
121 mm

7

3.3°

Target position

Joint

End-effector
position

13

And finally, the servo’s range of motion was experimentally determined to be 180

degrees.

Assumptions

The assumptions being made in this investigation are outlined below:

• The center of mass of the item being held by the manipulator is at the precise

location of the end-effector. Without this assumption, it would be impossible to

perform the torque calculations, as the load’s shape (and hence location of

center of mass) affects the torque.

• The mass of the robot arm is distributed evenly along the length of the arm. This

is a convenient approximation made to avoid trivially asserted masses.

• The same motor is used for each joint of every robot. This assumption is for

consistency.

• The total reach length of the robots is 30 centimeters. This assumption is also for

consistency.

• The individual link lengths in a single arm are equal to each other (equal to

reach/DOF). Once again, this is for consistency and simplicity.

• The unique and total number of points that can be reached by the robot, rounded

to a certain 3D grid, is a fair representative of the work envelope. This

assumption allows us to model the work envelope in terms of the points reached,

as doing so otherwise would be much more difficult.

14

Calculations and Simulations

Payload

When calculating the payload capacities of the robots, the torque specification of the

bottommost motor, the length and the mass of the arm are considered.

The motors weigh 57 ±1 grams and have a torque specification of 15kg-cm. Hobby-

scale robots are typically 3D printed, so if the links were to be 3D printed using PLA

plastic (density of 1.25g/cm3), with an infill density of 25%, and were to have a cross-

sectional area of 2cm*2cm=4cm2, then the mass of the arm without the motors should

be 1.25*0.25*(4*30) = 37.5 grams.

In the first robot, with 1 DOF, the axis of rotation is vertical, meaning that this joint

doesn’t have to apply a force to resist gravity. As long as the structural integrity of the

robot is sufficient, this robot won’t have any payload limitations. The payload can

therefore be considered as infinite or an arbitrarily large value.

The second joint of the robot with 2 DOF has to hold up the arm and the load against

gravity. The torque of the arm on the second motor can be shown as (15/2)*(37.5/2) g-

cm because the second link composes half the mass of the whole 3D printed arm

structure, and its center of mass is at the center of the link, which is 15/2 cm away from

the motor. The torque expression can be used to calculate the payload:

τ = (15/2)*(37.5/2) + 15*P = 15*1000 P = 990.625 grams

Similarly, in the 3 DOF robot, the second joint must be considered again because it is

the one that will be subjected to the greatest torque. This time, the torque expression

15

will also include the mass of the third motor, and can be shown by:

τ = (20/2)*(37.5*(2/3)) + (20/2)*57 + 20*P = 15*1000 P = 709 grams

Following the same reasoning, the payload can be generalized as:

𝑃 =
15 ∗ 1000 −

30 −
30
𝑛

2 ∗ [37.5 ∗ (1 −
1
𝑛) + 57 ∗ (𝑛 − 2)]

30 − 30/𝑛

With this equation, a table of DOF vs payload can be generated:

DOF Payload

1 N/A

2 990 g

3 710 g

4 600 g

5 520 g

6 470 g

7 420 g

8 380 g

9 350 g

Table 1, Effect of DOF on Payload

16

Repeatability

The repeatability of the 1 DOF robot can be calculated easily. As it only has one joint,

and one link of length 30 cm, the angular repeatability (±3.3°) can be extrapolated to the

end-effector as shown:

r = 2*π*30*(3.3/360) = 1.7 cm

Repeatability = ±1.7cm

Note that in the above expression, the repeatability was considered as an arc, instead

of a straight line, from the target position to the maximum error position. This

approximation may result in very small differences, but they will be negligible.

For the next robot, two joints and two respective links of length 15cm must be

considered. If these two joints rotated in the same direction, they could have just been

added; however, as they move the end-effector in perpendicular directions, the

Pythagorean theorem will be used instead, by calculating the root-sum-squared:

r = √((30*k)^2 + (15*k)^2) = 1.9

Repeatability = ±1.9cm

Note that the substitution k = 2*π*(3.3/360) has been made for simplicity.

As more degrees of freedom are added, the joint configurations of the robots get

increasingly complex. That is why for the sake of consistency, all of the following

repeatability values will also be calculated using the simple root-sum-squared method.

In the robot with 3 DOF, the repeatability can therefore be shown as:

r = √((30*k)^2 + (20*k)^2 + (10*k)^2) = 2.2

Repeatability = ±2.2cm

17

It follows that the repeatability of the 4 DOF robot is:

r = √((30*k)^2 + (22.5*k)^2 + (15*k)^2 + (7.5*k)^2) = 2.4

Repeatability = ±2.4cm

The same root-sum-squared method is applied to the next robots, and a table of DOF

vs repeatability is constructed:

DOF Repeatability

1 ±1.7cm

2 ±1.9cm

3 ±2.2cm

4 ±2.4cm

5 ±2.6cm

6 ±2.7cm

7 ±2.9cm

8 ±3.1cm

9 ±3.2cm

Table 2, Effect of DOF on Repeatability

18

Work Envelope

The work envelopes of the robots were evaluated by a program written by the author in

MATLAB, based on the concept of robot forward kinematics (see appendix). This

program returns two numbers: the first gives the number of unique points that the robots

can reach, where the each of the coordinates are rounded to the nearest 5; the second

number gives the total number of points that the robot can reach.

The program was executed with its parameters set to a reach length of 30, angle

increments of 0.06 radians, and a maximum angle of pi/2 from the zero position. The

data can be seen below:

DOF Unique Points Total Points

1 1 54

2 93 2,862

3 342 151,686

4 490 8,039,358

5 605 426,085,974

6 743 22,582,556,622

7 N/A 1,196,875,500,966

8 N/A 63,434,401,551,198

9 N/A 3,362,023,282,213,494

Table 3, Effect of DOF on Unique and Total Points Reachable

Legend:

Roman = Computed by MATLAB

Bold = Estimated

19

When one examines the total points column, it can be found that each of the computed

values are exactly 53 times the previous. This can be explained by the fact that with

each new DOF, the number of total iterations should be multiplied by a constant, which

is equal to the range of the iterations divided by the iteration increment:

2*(pi/2) / 0.06 ≈ 52.36

When rounded upwards to the nearest integer, this yields 53. Hence, for the robots with

DOF 7 and above, the values were calculated by multiplying the previous by 53, instead

of using MATLAB.

Additionally, some of the unique point values haven’t been given values, because the

MATLAB computation time increases geometrically with each new DOF, meaning that

those with a large number take too long to compute practically. However, as shown in

the analysis section below, the values form a clear linear trend, which will suffice in

extrapolating the greater values.

20

Analysis

Graph 1, Payload and Repeatability vs. DOF

Graph 2, Work Envelope Points vs. DOF

y = 1537.2x-0.672

R² = 0.9972

y = 0.1883x + 1.5806
R² = 0.9873

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

350

550

750

950

1150

1350

1550

1 2 3 4 5 6 7 8 9

R
ep

ea
ta

b
ili

ty
 (

cm
)

P
ay

lo
ad

 (
g)

Number of DOF

Payload and Repeatability vs. DOF

Payload

Repeatability

Power (Payload)

Linear (Repeatability)

y = 154.11x - 160.4
R² = 0.9851

y = 1.0189e3.9703x

R² = 1

0

5E+14

1E+15

1.5E+15

2E+15

2.5E+15

3E+15

3.5E+15

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9

To
ta

l P
o

in
ts

U
n

iq
u

e
P

o
in

ts

Number of DOF

Work Envelope Points vs. DOF

Unique Points

Total Points

Linear (Unique Points)

Expon. (Total Points)

21

To be able to compare the different variables and deduce the optimal value for the DOF,

they need to have equivalent scales. Each of the variables must carry the same weight

in this calculation, because the robot in question is to be as balanced and well-rounded

as possible. Hence, each of the variables will be converted to a scale from 0 to 1, by

dividing their best fit curve equations by their maximum values (in the DOF domain of 1

to 9).

Additionally, as a value of 1 will be the desirable/preferable value for each variable, the

expressions will be subtracted from 1 if they are the opposite. For example, the scaled

repeatability expression will be subtracted from 1, because larger repeatability numbers

mean greater errors, which are not preferable, and must therefore be expressed by

smaller index values.

Payload

The payload has a maximum value of 1537.2 when the DOF is 1. Although in practice,

when the DOF is 1, the payload should be infinite, one can still find a value for the

payload by extrapolating the best fit curve to x=1.

B1 = 1537.2x-0.672
 / 1537.2 = x-0.672

Repeatability

The maximum value occurs when the DOF is 9. The repeatability value from the best fit

curve at this x value is y0 = 0.1883*9 + 1.5806 = 3.2753

B2 = 1 – ((0.1883x + 1.5806) / 3.2753)

22

Work Envelope – Unique Points (Reachable Space)

The maximum value happens at x=9, and is y0 = 154.11*9 – 160.4 = 1226.59

B3 = (154.11x - 160.4) / 1226.59

Work Envelope – Total Points (Flexibility)

The maximum value happens at x=9, and is y0 = 1.0189e3.9703*9 ≈ 3.36237… E15

B4 = 1.0189e3.9703x / y0 = e3.9703(x-9)

Unifying Expressions

As both B1 and B2 (payload and repeatability) are decreasing functions of the DOF, and

B3 and B4 (unique and total points) are increasing, both pairs are added individually, and

then the intersection of the two sum functions is found.

Graph 3, Graph of y=B1+B2 and y=B3+B4

y = B3 + B4 y = B1 + B2

x = 5.3162

23

When the intersection of the two functions is computed numerically, this result is found:

x = 5.3162 ≈ 5

Conclusion

In this extended essay, the relationship between the number of degrees of freedom in

an articulated robot arm, and the repeatability, payload, and work envelope has been

investigated. This has been done by modelling each of these variables, either through

straightforward calculations or through MATLAB computations. These models were

converted to index values between 1 and 0, and were then manipulated so that the DOF

value which yielded the most balanced robot in terms of the various specifications could

be found.

The optimal number of degrees of freedom for the described robot has been found to be

5. This matches what had initially been expected (5 to 6), and what is typically used in

the industry. It can therefore be concluded that the most commonly used robots in

industries are in fact the most balanced and well-rounded robots, in terms of

specifications.

It should be noted that the robot configuration and the specifications of the motors used

are bound to have an effect on the results. Therefore, the fact that the robot being

modelled was based on hobby-scale robots has the implication that the result may not

be completely applicable to the larger industrial robots. The investigation could therefore

be improved by studying industrial robots with specific industrial servo motors. Further

improvements could be made by removing the assumptions made throughout this

essay, such as the assumption that all the link lengths were of equal length and mass.

24

Works Cited

Kucuk, Serdar and Zafer Bingul. "Robot Kinematics: Forward and Inverse Kinematics."

Cubero, Sam. Industrial Robotics: Theory, Modelling and Control. Pro Literatur

Verlag, 2006.

<http://www.intechopen.com/books/industrial_robotics_theory_modelling_and_co

ntrol/robot_kinematics__forward_and_inverse_kinematics>.

"MG996R Digital Servo Metal Gear." 25 September 2016. Ebay.

<http://www.ebay.com.au/itm/MG996R-Digital-Servo-Metal-Gear-Steering-Servo-

Helicopter-RC-Car-Boat-Model-/191862737980>.

"Robot Arm Configurations." 2016. Robot Basics.

RobotWorx. "It's All About That Strength - Robot Payloads." n.d. RobotWorx.

<https://www.robots.com/articles/viewing/it-s-all-about-that-strength-robot-

payloads>.

—. "What are the main types of robots?" n.d. RobotWorx.

<https://www.robots.com/faq/show/what-are-the-main-types-of-robots>.

—. "What is a work envelope?" n.d. RobotWorx.

<https://www.robots.com/faq/show/what-is-a-work-envelope>.

—. "What is robot repeatability?" n.d. RobotWorx - Used Robots. <https://www.used-

robots.com/faq/question/what-is-robot-repeatability>.

Ross, Larry, et al. Robotics: Theory and Industrial Applications. Goodheart-Willcox,

2010. <http://www.g-w.com/pdf/sampchap/9781605253213_ch02.pdf>.

United States Department of Labor. "Industrial Robots and Robot System Safety." n.d.

Occupational Safety & Health Administration.

<https://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html>.

Vex Robotics. "10.2: Degrees of Freedom." n.d. Vex Robotics Curriculum.

<http://curriculum.vexrobotics.com/curriculum/lifting-mechanisms/degrees-of-

freedom>.

Wysk, Richard. "Introduction to Robotics." n.d. PennState College of Engineering.

Powerpoint Document. <www.engr.psu.edu/cim/ie450/ie450pp8.ppt>.

25

Appendix

MATLAB Source Code for Work Envelope Calculations

% ee_work_envelope:

% Used to calculate the work envelope of an articulated robot arm

% based on the number of points reachable (unique, and total), with

% the points rounded to a 3D grid (nearest 5cm) for consistency.

% It is assumed that the link lengths are all equal (= reach / DOF)

% DOF:

% Number of degrees of freedom / joints

% reach:

% Total reach of arm, in cm

% angleIncrement:

% The value to increment the angles by while

% iterating. Larger values will result in skipped points on

% the grid, while smaller values will require more computation time.

% maxAngle:

% The maximum angle that a joint can rotate to, from its center

% position. Applied to all the joints, for consistency.

function ee_work_envelope(DOF, reach, angleIncrement, maxAngle)

 tic; % Start timer (for benchmarking)

 draw_figure();

 coordinates = iterate_angles_first(DOF, angleIncrement, maxAngle, reach/DOF);

 iterate_coordinates(coordinates);

 colormap(jet);

 colorbar;

 view(0,90);

 toc;

end

% draw_figure:

% Prepares the graphical window

function draw_figure

 global az el;

 figure; % launches default window

 title('3D Diagram of Work Envelope');

 xlabel('X');

 ylabel('Y');

 zlabel('Z');

 grid on;

 axis([-50 50 -50 50 -30 60]);

 h = rotate3d;

 h.ActionPostCallback = @rotate_event;

 h.Enable = 'on';

 uicontrol('Style','text','String','Azimuth','Position', [0 15 50 20]);

 uicontrol('Style','text','String','Elevation','Position', [52 15 50 20]);

 az = uicontrol('Style','edit','String','0','Position', ...

 [0 0 50 20],'Callback',@az_type_event);

26

 el = uicontrol('Style','edit','String','0','Position', ...

 [51 0 50 20],'Callback',@el_type_event);

end

% iterate_angles_first:

% A version of the iterate_angles function (see below), which is only to

% be used with the first DOF.

% Its loop uses parallel workers, and it also has code for the progress bar.

function coordinates = iterate_angles_first(dof, angInc, maxAng, linkLength)

 % The following is a 3-dimensional matrix representing the coordinates.

 % Add 31 to each of the coordinates (x, y, and z) to get the matrix

 % index (i.e. x=-30 has an index of x=1, and x=30 has x=61, in the matrix). The

value

 % contained in the matrix represents how many instances of that point was

 % calculated (i.e. counting multiple solutions).

 coordinates = zeros(61, 61, 61);

 % First joint only iterates from -maxAng degrees to 0 degrees,

 % to optimize the computation. The values are reflected

 % to the other side later, on line 138

 parfor O_int = 0 : int8(maxAng/angInc),

 O = -double(O_int)*angInc;

 coordinates_partial = zeros(61, 61, 61);

 T = get_transformation_matrix(1, dof, O, linkLength); % Calculate next

transform matrix

 if dof > 1, % If not last joint, keep going

 coordinates_partial = iterate_angles(2, T, coordinates_partial, dof,

angInc, maxAng, linkLength);

 else % If last joint, calculate end-effector position and round to

 % grid (nearest 5cm)

 x = round(T(1,4)/5, 0) * 5 + 31;

 y = round(T(2,4)/5, 0) * 5 + 31;

 z = round(T(3,4)/5, 0) * 5 + 31;

 coordinates_partial(x, y, z) = coordinates_partial(x, y, z) + 1;

 end

 coordinates = coordinates + coordinates_partial;

 end

end

% iterate_angles:

% Recursive function that iterates the joint angles with angleInc

% increments, to find all the possible joint combinations and

% their respective end-effector positions.

% jointNum:

% Indicates which joint is being called for; is necessary for

% the recursive function. 1 = first joint, dof = last joint

% prev_T:

% The transformation matrix up until the joint in question.

function coordinates_partial = iterate_angles(jointNum, prev_T, coordinates_partial,

dof, angInc, maxAng, linkLength)

 min = maxAng;

 max = maxAng;

 for O = -min : angInc : max,

 T = prev_T * get_transformation_matrix(jointNum, dof, O, linkLength); %

Calculate next transform matrix

 if jointNum < dof, % If not last joint, keep going

27

 coordinates_partial = iterate_angles(jointNum + 1, T, coordinates_partial,

dof, angInc, maxAng, linkLength);

 else % If last joint, calculate end-effector position and round to

 % grid (nearest 5cm)

 x = round(T(1,4)/5, 0) * 5 + 31;

 y = round(T(2,4)/5, 0) * 5 + 31;

 z = round(T(3,4)/5, 0) * 5 + 31;

 coordinates_partial(x, y, z) = coordinates_partial(x, y, z) + 1;

 end

 end

end

function iterate_coordinates(coordinates)

 pointCount = 0;

 points = zeros(4, 500000);

 i = 1;

 coordinates = coordinates + flip(coordinates,2);

 for x = -30 : 5 : 30,

 for y = -30 : 5 : 30,

 for z = -30 : 5 : 30,

 v = coordinates(x+31, y+31, z+31);

 if v > 0,

 points(1,i) = x;

 points(2,i) = y;

 points(3,i) = z;

 points(4,i) = log(v);

 i = i + 1;

 pointCount = pointCount + v;

 end

 end

 end

 end

 fprintf('%i unique, %i total points found\n', i-1, pointCount);

 scatter3(points(1,:), points(2,:), points(3,:), 40, points(4,:), 'o', 'filled');

end

function T = get_transformation_matrix(jointNum, dof, Q, d)

 switch jointNum

 case 1

 T = T_base(Q,d);

 case 2

 T = T_turn_side(Q,d);

 case 3

 if dof <= 6

 T = T_repeat_side(Q,d);

 else

 T = T_turn_up(Q,d);

 end

 case 4

 if dof <= 5

 T = T_repeat_side(Q,d);

 elseif dof == 6

 T = T_turn_up(Q,d);

 else

 T = T_turn_side(Q,d);

 end

 case 5

 if dof == 6

28

 T = T_turn_side(Q,d);

 else

 T = T_turn_up(Q,d);

 end

 case 6

 if dof == 6

 T = T_turn_up(Q,d);

 else

 T = T_turn_side(Q,d);

 end

 case 7

 T = T_turn_up(Q,d);

 case 8

 T = T_turn_side(Q,d);

 case 9

 T = T_turn_up(Q,d);

 end

end

function T = T_base(Q,d)

 T = [cos(Q) -sin(Q) 0 0; sin(Q) cos(Q) 0 0; 0 0 1 d; 0 0 0 1;];

end

function T = T_turn_side(Q,d)

 T = [cos(Q) -sin(Q) 0 -d*sin(Q); 0 0 -1 0; sin(Q) cos(Q) 0 d*cos(Q); 0 0 0 1;];

end

function T = T_repeat_side(Q,d)

 T = [cos(Q) -sin(Q) 0 -d*sin(Q); sin(Q) cos(Q) 0 d*cos(Q); 0 0 1 0; 0 0 0 1;];

end

function T = T_turn_up(Q,d)

 T = [cos(Q) -sin(Q) 0 0; 0 0 1 d; -sin(Q) -cos(Q) 0 0; 0 0 0 1;];

end

% The functions below make the UI interactive

function rotate_event(~,evd)

 global az el;

 newView = round(evd.Axes.View);

 az.String = newView(1);

 el.String = newView(2);

end

function az_type_event(source,~)

 [~, el] = view;

 view(str2double(source.String), el);

end

function el_type_event(source,~)

 [az, ~] = view;

 view(az, str2double(source.String));

end

