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Investigating a Large Amplitude Pendulum 

Research Question 

How does the amplitude of a pendulum’s oscillation affect its period? 

Introduction 

I have been fascinated by pendulums for a long time, ever since I first saw one in a museum. 

I recently watched an online lecture in which a professor sits on a large pendulum to show 

that the period is not affected by mass. This sparked my interest, and made me wonder 

about the various factors that did or didn’t affect the period. I decided to examine the 

amplitude and period relationship. 

We learned in class that pendulum oscillations were an example of simple harmonic motion. 

Hence, they were presumed to be isochronous, meaning that the period wasn’t affected by 

the amplitude. However, this seemed counterintuitive and wrong to me. Additionally, the 

large number of assumptions made during the equation derivation restricted the 

applicability of the model to small angle oscillations. I therefore decided to come up with a 

more accurate model of the pendulum oscillation’s period, without using the small-angle 

approximation. I will be comparing the results of the classical model, the new large 

amplitude model, and an experimental pendulum. 

Modelling 

Typically, when coming up with an expression for the pendulum’s period, the small angle 

approximation of sinθ ≈ θ is used. This yields the familiar equation: 

𝑇 = 2𝜋√
𝑙

𝑔

where l is the pendulum’s string length, and g the effective acceleration due to gravity. 

When coming up with the more accurate 

model, we will still need to make certain 

assumptions. These are that there is no 

friction at the top joint of the pendulum, that 

the string is massless and rigid, and that the 

bob is miniscule. 

We can use the principle of the conservation 

of energy to derive the equation for the 

pendulum’s motion, and then the period. The 

energy in this pendulum is always either in 

the form of kinetic or gravitational potential 

energy. The gravitational potential energy 

depends on the bob’s height relative to the 
Figure 1, Pendulum (Lima and Arun)
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equilibrium point, which can be shown as 𝐿 − 𝐿𝑐𝑜𝑠𝜃 = 𝐿(1 − 𝑐𝑜𝑠𝜃). The gravitational 

potential energy at any point is therefore 𝑚𝑔𝐿(1 − 𝑐𝑜𝑠𝜃). When θ0, which is the angular 

amplitude, is plugged into the equation, this will give us the total energy of the system. 

Next, we need the kinetic energy of the bob. We know that 𝑠 = 𝜃 ∗ 𝐿 from circular motion, 

therefore 𝑣 =
𝑑𝜃

𝑑𝑡
∗ 𝐿. The kinetic energy becomes 

1

2
𝑚𝑣2 =

1

2
𝑚𝐿2(

𝑑𝜃

𝑑𝑡
)2. 

The following equality for the energy of the system can then be formed: 

𝑚𝑔𝐿(1 − 𝑐𝑜𝑠𝜃0) =
1

2
𝑚𝐿2(

𝑑𝜃

𝑑𝑡
)2 + 𝑚𝑔𝐿(1 − 𝑐𝑜𝑠𝜃) 

When written in terms of dθ/dt: 

𝑑𝜃

𝑑𝑡
= √

2𝑔

𝐿
(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃0) 

Next, the equation is written in terms of dt, so that we can get an expression for the period: 

𝑑𝑡 = √
𝑙

2𝑔(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃0)
𝑑𝜃 

And finally, we integrate both sides. The right-hand-side is integrated from 0 to θ0 and then 

multiplied by 4, because the pendulum travels from the equilibrium position to the extreme 

position four times in a complete oscillation. This yields the expression for the period: 

𝑇 = 4√
𝑙

2𝑔
∗ ∫

1

√𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃0

𝜃0

0

𝑑𝜃 

This integral cannot be solved analytically, and must instead be evaluated numerically (Lima 

and Arun). In this investigation, this will be computed with the Wolfram Alpha platform, but 

any capable calculator or computer software can also be used. 

Hypothesis 

My hypothesis is that the expression above will be more accurate than the traditional 

pendulum equation, especially when the amplitude of the oscillation is relatively large, 

because it doesn’t rely on the small-angle approximation. We will be comparing both 

models with the experimental results to see how they differ. 
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Variables 

Independent variable: 

The amplitude of the oscillation. This will be equal to the angle between the 

maximum position of the pendulum and the vertical equilibrium position, and will be 

expressed in degrees. 

The variable will be varied from 10 degrees to 90 degrees, with 10 degree 

increments. Each case will be repeated 5 times to minimize the random error. 

Instead of measuring the angle directly, the independent variable will be measured 

and changed in terms of the horizontal distance of the pendulum bob from the 

equilibrium position, for greater ease and precision. As the length of the string will 

be 1 meter, this horizontal distance will be equal to 1*sin(θ). The horizontal 

distances will therefore be 0.174, 0.342, 0.500, 0.643, 0.766, 0.866, 0.940, 0.985 and 

1.00 meters. 

Dependent variable: 

The period of the pendulum’s oscillation. This will be measured with a handheld 

stopwatch. After the pendulum is pulled to the side and let go, it will be allowed to 

oscillate once and come back to its initial maximum position, at which point the 

stopwatch will be started; this is to make sure that the operator’s error is minimal, 

and the pendulum is oscillating regularly. The pendulum will then be allowed the 

oscillate 10 times, before the stopwatch is stopped. The recorded time will be 

divided by 10, to achieve a precise result for the period. 

Control variables: 

• Length and material of the pendulum’s string: 

o Silk thread of length 1 meter, as measured by a meter-ruler. 

o Reasons: 

▪ Length affects the period, as shown by the pendulum formula. 

▪ Silk thread is very light, which fits the assumption of it being massless. 

▪ The thread is also thin, thus minimizing the drag force. 

• Mass and material of the pendulum’s bob: 

o 65.0 ±0.5 gram lead bob, with a hook to tie the string to. 

o Reason: 

▪ Lead is a dense metal, which will maximize mass while minimizing the surface 

area, thereby minimizing the drag force. 

• Initial velocity of pendulum: 

o When the pendulum is released from its maximum position, it will be let go without 

pushing so that its initial velocity is close to zero. 

o Reason: 
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▪ If the velocity isn’t zero at the measured maximum position, then its amplitude 

will actually be greater than expected, making the measurements inaccurate. 

• Medium that the pendulum oscillates in: 

o The pendulum will be oscillating in air. 

o Reason: 

▪ Placing the pendulum in a different medium, such as water, will not only affect the 

drag force, but there will also be a buoyancy force changing the effective 

acceleration and hence period. 

Materials List 

• 1-meter silk thread 

• 2 meter-rulers 

• 65g lead bob 

• Stopwatch 

Method 

1. Tie one end of the silk thread to a point on the ceiling. 

2. Tie the lead bob to the bottom end of the fishing rod, so that the string length 

between the top and the center of mass of the bob is 1 meter. 

3. Cut the excess fishing rod from the bottom. 

4. Place one of the meter-rulers under the pendulum horizontally, with its zero-mark 

aligned with the pendulum’s equilibrium position. 

5. Hold the other meter-ruler perpendicular to the first, at the 0.174 meter position of 

the horizontal ruler. Move the bob to align with the vertical ruler. 

Equilibrium 

position 

Maximum 

position 

1st ruler, for horizontal 

distances 

2nd ruler, for 

alignment Pendulum 

Diagram 
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6. Let go of the bob, and wait for it to complete its first oscillation. 

7. When the first oscillation is complete, and the bob is momentarily at its initial 

position again, start the timer on the stopwatch. 

8. Wait for the pendulum to make 10 full oscillations. Stop the timer when it finishes. 

9. Divide the time measured by 10 to get the period. Record this in the table below. 

10. Repeat steps 5-9, four more times (to get a total of 5 trials). 

11. Repeat steps 5-11 with each of the other amplitudes. 

 

Results 

Table 1 – Amplitudes and Experimental Time Periods of Pendulum 

  
Time for 10 oscillations / sec 

ΔT = ±0.4 s 
  

Amplitude 

/ degrees 

Δθ = ±5° 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean 

Experimental Period 

/ sec 

ΔT = ±0.04 s 

10 20.19 20.21 20.31 20.31 20.18 20.24 2.02 

20 20.27 20.39 20.39 20.47 20.17 20.34 2.03 

30 20.46 20.51 20.55 20.51 20.45 20.50 2.05 

40 20.56 20.74 20.86 20.65 20.61 20.68 2.07 

50 21.08 20.92 21.06 21.03 21.15 21.05 2.10 

60 21.21 21.29 21.52 21.34 21.43 21.36 2.14 

70 21.5 21.56 21.68 21.72 21.76 21.64 2.16 

80 21.97 22.15 22.13 22.17 22.06 22.10 2.21 

90 22.42 22.45 22.56 22.63 22.55 22.52 2.25 

 

Observations: 

When letting go of the pendulum at large angles, the string wouldn’t be taut for the first few 

oscillations. 

The oscillations were dampened significantly (almost by half after the 10 oscillations). This 

was most noticeable in the large angled oscillations. 

The pendulum wasn’t just moving back and forth; it was also drifting off to the sides, 

performing circular motion. 
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Uncertainties 

The most significant uncertainty in the time measurements is the human reaction time, 

rather than the stopwatch’s resolution. The human reaction time is found to be 0.2 seconds 

on average (Kosinski). As this error is introduced during both the initiation and ending of the 

time measurement, the error was taken as ±0.4 seconds. As each time measurement 

consisted of 10 oscillations, the uncertainty of the periods was then taken as 0.4 / 10 = 0.04 

seconds. 

The standard deviations of the time measurements were also evaluated, using the following 

expression: 

𝜎 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 

However, all of the standard deviations were found to be under 0.1, which is smaller than 

the value of 0.4 found above, which is why the standard deviation wasn’t used as the 

uncertainty. 

There was also a relatively large amount of uncertainty introduced when measuring the 

amplitudes using the horizontal distance method. A reasonable value for this uncertainty is 

±5 degrees, as this is equal to half of the independent variable’s increment value (10 

degrees) and should be sufficient to account for the random errors. 

Analysis 

The simple pendulum model was used to calculate the isochronous period as: 

𝑇 = 2𝜋√
1

9.81
= 2.006066681 𝑠 

Next, the new large amplitude model was used to predict the periods for each value of the 

amplitude. For example, to find the period for 10 degrees, the following expression was 

written and evaluated: 

𝑇 = 4√
1

2 ∗ 9.8
∗ ∫

1

√𝑐𝑜𝑠𝜃 − cos (10)

10

0

𝑑𝜃 = 2.01092 𝑠 

The experimental period, and the two calculated periods for each amplitude can be found in 

Table 2. 
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Table 2 – Comparison of Experimental and Calculated Periods 

Amplitude 

/ degrees 

Δθ = ±5° 

Experimental Period 

/ sec 

ΔT = ±0.04 s 

Simple Model 

Period / sec 

Large Amplitude 

Model Period / sec 

10 2.02 2.006066681 2.01092 

20 2.03 2.006066681 2.02248 

30 2.05 2.006066681 2.04203 

40 2.07 2.006066681 2.06999 

50 2.10 2.006066681 2.10701 

60 2.14 2.006066681 2.15397 

70 2.16 2.006066681 2.2121 

80 2.21 2.006066681 2.28305 

90 2.25 2.006066681 2.36905 

 

These results are displayed visually in Graph 1 below. 

 

As shown in Graph 1, the new model approximates the experimental values until an 

amplitude of 60 degrees. When the amplitude is greater than 60, the new model is no 

longer within the error bars. This is clearly a huge improvement over the ideal/simple 

model, which is only applicable at much smaller angles (until 20 degrees). 

y = 2E-05x2 + 0.0008x + 2.0081
R² = 0.9971

y = 5E-05x2 - 0.0008x + 2.0165
R² = 0.9996
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Next, the applicability of the models can be evaluated numerically. Table 3 shows the 

percentage errors of both models, compared to the experimental values. 

Table 3 – Percentage Errors of Calculated Periods 

Amplitude 

/ degrees 

Δθ = ±5° 

% Error of Simple Model 
% Error of Large Amplitude 

Model 

10 0.690 0.450 

20 1.18 0.370 

30 2.14 0.389 

40 3.09 0.000483 

50 4.47 0.334 

60 6.26 0.653 

70 7.13 2.41 

80 9.23 3.31 

90 10.8 5.29 

 

It can be seen from Table 3 that the percentage errors of the new model are significantly 

smaller than the simple model. 

Furthermore, all of the percentage errors for the new model with amplitudes smaller than 

or equal to 60 degrees have percentage errors that are smaller than 1%. This proves that the 

new model is an accurate approximation of the period of a large amplitude pendulum, for 

amplitudes up to 60 degrees. 

In contrast, only the first value of the simple pendulum has a percentage error smaller than 

1%, indicating that it is only applicable to amplitudes of up to 10 degrees. 

Conclusion and Evaluation 

The aim of this experiment was to discover the relationship between the amplitude and the 

period of a pendulum’s oscillation. The oscillations of a pendulum were found to not be 

isochronous, in contrast to what is taught in the classroom. The period of the pendulum 

actually varies greatly with relation to the amplitude. That is why the period value calculated 

with the simple pendulum model is only applicable when the amplitude is no greater than 

10 degrees. 

A new model was derived by avoiding the use of the trigonometric small-angle 

approximation. It was hypothesized that this model would be significantly more accurate 

than the conventional model, especially when the amplitude was relatively large. This 

hypothesis was confirmed by the data. By using an experimental pendulum, it was found 

that the new model is accurate (within 1 percent of experimental values) to amplitudes of 
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up to 60 degrees, rather than 10 degrees like the old model. In conclusion, it can be said 

that avoiding the small-angle approximation is critical when considering large-angle 

pendulums. 

There were a few weaknesses in this investigation that could be improved upon. Firstly, 

neither air resistance nor friction was accounted for. These two factors were the reason why 

the oscillations were greatly dampened. When the oscillations were dampened, the 

amplitude gradually became smaller. And, because there is a positive relationship between 

the amplitude and period (as found in this investigation), this means that the dampening 

oscillations also resulted in decreasing periods. Over the 10 oscillation duration, this 

probably caused the measured mean periods to be smaller than expected for the given 

amplitudes. Furthermore, it was observed during the experiment that the dampening was 

more noticeable during the large amplitude trials. Therefore, if that was really the case, 

then the measured periods might have had an increasing systematic error in the negative 

direction as the amplitude increased. Furthermore, this could be a viable explanation for 

why the values calculated by the new model were greater than the experimental values 

when tested with angles over 60 degrees. If this investigation is repeated in a vacuum 

chamber, or air resistance and friction is accounted for in some way, then it might be found 

that the new model is actually accurate for all values of the amplitude. 

Two more sources of error were that the string wouldn’t be completely taut when 

oscillating with large amplitudes, and that the oscillation wasn’t completely linear, but 

rather slightly circular. Future studies can avoid these problems by using a physical 

pendulum composed of a rigid, light rod, and attaching it to a smooth, nearly frictionless 

joint that only rotates around one axis. This would also allow for the investigation of 

amplitudes greater than 90 degrees, thereby increasing the scope of the study. 

The experiment could be made more precise by using a “Vernier” photogate to detect when 

the pendulum is at its extreme position and hence measure the period, instead of using a 

handheld stopwatch. Similarly, a more precise way of measuring the amplitude could have 

been used, such as using a large protractor. Finally, the pendulum could be allowed to 

oscillate 20 times instead of 10, to further improve precision. All of these improvements 

would allow for the random error to be minimized. 
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