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Section 1.0-Introduction

Robots improve the quality of human life through assistance in surgery, military, and
industrial manufacturing. In the 21st century, robot technology is booming, and even the simplest
robots are in high demand. This report describes the design, programming, mechanics, and
optimization of a tennis ball catching robot called the Catch-Bot, which is the manifestation of
the vast capabilities of robot technology. For humans, catching a ball is simple. For our group
and the Catch-Bot, this simple task requires complex programming, hands-on building,
communication, and teamwork. While the Catch-Bot will not directly benefit humanity, this
machine demonstrates the potential of robotic technology as well as smaller, cheaper
microcontrollers.

The Catch-Bot captures the motion of a projectile thrown at the robot using two identical
cameras mounted on opposite sides of the frame. These images must then be processed by a
computer that executes a C++ program. This program converts the images from RGB to HSV
(Hue, Saturation, and Value) format and applies a binary threshold on the HSV values to create a
new image in which the colored projectile appears white and everything else black. A Hough
Circle Transform is utilized to detect the circle in the image, and the detected pixel coordinates
are used to calculate a direction vector for each camera. The software then triangulates the
projectile’s position in 3D space by searching for the intersection or closest point of the two 3D
lines (consisting of direction vectors and the positions of the cameras). At a rate of
approximately 30 frames per second, the C++ program repeats this process to collect multiple
data points and calculate the best fit curve of the projectile’s trajectory. The computer sends the
X and Y coordinates of the final destination of the projectile to the Arduino board to instruct the
end-effector to intercept and catch the projectile.

The Arduino code actuates the motors to move the end-effector to the final destination.
To avoid delays in the serial communication of the computer and arduino, the coordinates are
read by the Arduino in the form of individual bytes and then converted to numbers, for reading
them as strings is very inefficient.

The mechanics of the Catch-Bot are influenced by Cartesian coordinate robots such as
3D printers and CNC machines. To catch the falling projectile, the crate, or end-effector, must
slide on two parallel rods in each of the X and Y directions using a stepper motor-driven pulley
system. Mounted on one side of the 24 by 24 by 3.5 inch acrylic frame, a stepper motor and large
pulley rotates the timing belt to move the primary acrylic tray horizontally. An additional stepper
motor and pulley mounted on this tray rotates another belt to move an upper acrylic tray in the
perpendicular direction. The end-effector begins in the center of the frame and can traverse the
complete length of the frame in around 1.08 seconds.

The assembly of the Catch-Bot came with unexpected difficulties. The tension of the belt
caused the weaker acrylic to bend inwards, so a wooden dowel was added to prevent bending of
the frame. The rapid rotation of the stepper motor caused the belt teeth to slip from the 3D
printed pulley, so the Arduino code was modified to accelerate the speed of the motor gradually.
Additionally, the 3-D printed pulleys were replaced with metal pulleys. These modifications
yielded more consistency in the movement.
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Section 2.0-User’s Manual

The Catch-Bot operates on a 12V power
source, computer, and SV USB connector.
First, make sure that the 12V power source is
unplugged (to disable the motors) and drag the
crate/end-effector to the bottom left corner of
the frame (marked by the red arrow). Then,
connect the Arduino to the computer using the
USB cable. Connect the cameras to the
computer, and run the C++ program (see
below). Finally, plug the 12V source back into
the power jack. This initializes the system and
zeros the position, allowing the Catch-Bot to
orient itself in the frame.

The two cameras must remain at their
precise angles, for any alteration will reset the
calibration and reduce the chances of catching

the ball. The angle of these cameras is
approximately 45 degrees above the horizontal.
Also, the tension of the belt must be as tight as possible for reliable motion. In order to reach the
maximum tension below the lower tray, loosen the L-bracket with the idler on the side of the
frame, leaving 2 inches distance from the frame. Wrap the pulley around the stepper motor and
the idler and fasten the pulley belt to the belt clamp using zip ties and 4-40 nuts and bolts.
Compress the belt in the clamp. The tension in the belt should be tight and without slack. Then,
slowly tighten the corner brace until the belt is parallel to the bottom of the frame and isn’t
sliding up or down the idler during motion. Do not tighten the belt too much, but it should be
taut. For the upper tray, wrap the pulley belt around the stepper motor and idler. Compress one
end of the pulley belt in the clamp and zip tie both ends of the belt together. A belt tightener may
be used for additional tension.

The PCB board is mounted using velcro to the side of the frame. The wires from the
stepper motor that operates the upper tray, and the associated bumper switch should have excess
length to slide freely.

Use a ball that greatly contrasts the other colors in the room. A blue ball will be used in
this case. Stand approximately 3 meters away from the front end of the robot, which can be
identified by the frame-mounted stepper motor. Then, throw the colored ball at a minimum of 2
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meters above the floor at the Catch-Bot, within the fields of view of the front-facing cameras.
This will allow the robot to track the ball and calculate its trajectory.

To use the software, download the Windows executable files onto your computer, from
https://github.com/BaranCODE/BallCatcher/tree/master/Releases. Make sure the two PS3 Eye
' 3 cameras are plugged into your computer, and that you have
the necessary drivers (commercially available from

https://codelaboratories.com/). You may then run the file
called BallCatcher.exe by double-clicking on it. The
program will automatically connect to the two cameras and
the Arduino. You will see four windows, two of which
contain the images obtained from the cameras as well as
dots on the detected circles, and the others containing the
images after the HSV conversion and binary threshold.
There will be one additional settings window with sliders for
the HSV threshold value, a slider to toggle the triangulation,

“0 and a slider to toggle demo mode (see below). The last
command-line window is for debugging purposes. To start
the triangulation and control of robot, move the “Enabled” slider to 1.

The software comes with a demo mode to be used for demonstrations. As the trajectory
calculations are currently not working reliably, and-the-robet-eannoteateh-balls-as-intended; the
demo mode disables the trajectory calculations and sends the triangulated coordinates of the ball
directly to the robot. Hence, this mode lets the robot mirror the motions of the ball in one’s hand.
Demo mode is enabled by default; to disable it and observe the experimental trajectory
calculations in action, move the “Demo” slider in the Settings window to 0.
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Section 3.0-Hardware
Section 3.1-Components List

Component Quantity
Acrylic Frame (24 x 24 x 3.5 in) 1
Computer 1
Arduino Nano board 1
12V power source 2
Power jack 1
1 100uF capacitor 1
Upper carriage (4 x 5 in) 1
Lower carriage (20 x 6 in) 1
Stainless steel rods (24 in) 4
Wooden dowel (0.629 x 24 in) 1
Nema 17 Stepper Motor 17HS19-2004S 2
L-Bracket 1
Pulley Belt (5m) Sm
Pulley 2
4-40 Nuts, 4-40 Bolts 50
Short 3D Printed Belt clamp 1
Long 3D Printed Belt clamp 1
3D printed bearing mount 6
3D printed collar 4
3D printed collar with mount 4
PlayStation™ Eye cameras 2
Ball bearings 2
Bumper switch 2
10 kOhm resistor 2
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Section 3.2-Frame

The mechanics of a 3D printer heavily influenced the design of the Catch-Bot. Both
machines slide on smooth rods using a basic pulley system for optimal accuracy and precision.
This design provides full mobility within an area of simple Cartesian coordinates delivered by
the computer. Each motor controls one of the two axes.

FDM 3D printer 3D rendering of the Catch-Bot

The laser cut acrylic frame is 24 x 24 x 3.5 inches, a substantial 576 square inch range to
catch a ball. We constructed four identical 3D printed collars using AutoDesk Inventor, a 3D
modeling software. These collars fasten two smooth stainless steel rods to the frame.

3D model of bearing bracket
Lower and upper trays

The lower acrylic tray slides on linear bearings that are 8mm in diameter, slightly larger
than the diameter of the stainless steel rods. These bearings reduce frictional force in order to
maximize the speed of the crate. A pair of the linear bearings are zip tied to a pair of 3D printed
brackets that attach to the lower tray. The brackets also connect to the steel rod holder on the
upper tray, compressing the rods between two screws. Two more steel bearings hold the upper
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tray and crate to catch the ball. Each of the 3D printed parts were “tapped” or hollowed with
screw threads. However, the ABS plastic, the material used by the 3D printer, is not strong
enough to hold a tightened metal screw, so crucial joints are connected by a 4-40 nut and bolt.
Fluency with AutoDesk Inventor allowed us to assemble custom pieces that usually take two
hours to manufacture.

3D printed collar Linear bearing with 3D printed bracket

Section 3.3-Stepper Motors, Pulleys. and Reinforcement

Like 3D printers and laser cutters, the Catch-Bot uses two pulleys to move the crate in the
X and Y directions. The lower and upper trays are connected to a rotating pulley belt and
stepper motor. The diameter of the pulley determines the linear speed of the crate, so we 3D
printed pulleys of a specific size. In order to derive the linear speed, we measured the angular
velocity by fastening a pencil onto the stepper motor using a zip tie and spinning it at maximum
speed. The pencil hit a sheet of paper, indicating a revolution. We discovered that the motor
spun at a rate of 280 rotations per minute, and we derived that a pulley of 0.865 inches in
diameter resulted in a linear speed of approximately 12.7 inches per second. This is half the
length of our robot, meaning that it can reach from the center to any side or corner in a second,
which would be enough time to catch the ball. However, these 3D printed pulleys were
inherently flawed. They were printed with supports, which ruined the surface finish and thus the
effectivity of the pulley grooves. The second iteration of the 3D printed pulley didn’t have this
issue; however, the grooves for the pulley belt were still too shallow. Consequently, the rapid
rotational acceleration of the pulley resulted in slippage between the teeth on the pulley belt and
shallow teeth on the 3D printed pulley. The third and final iteration of the pulley system was
smaller and made of metal, equipped with deeper grooves. Sacrificing a smaller diameter and
reduced speed, this iteration does not cause any slippage, proving to be the most consistent
model.
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. ‘ Metal gear pulley (most
3D printed pulley with 3D printed pulley with effective)

support artifacts remaining better print quality

After the Arduino board receives coordinates from the computer, the motors are
instructed to rotate a given amount of steps to bring the end effector to the final destination. To
actuate the middle tray, the belt controlled by the pulley is attached to a 3D printed belt clamp,
and is compressed by zip ties. This integral piece of the actuator must hold a large tensional
force so that the belt does not slip off of the pulley gears. The opposite end to the motor and
pulley is an idler, to keep the belt on track and taut.

The tension of the pulley caused one side of the acrylic frame to warp dangerously
inwards. To overcome this obstacle, the acrylic frame was reinforced with screws and a wooden
dowel.

Nema 17 Stepper Motor 17HS19-2004S

3D printed clamps to fasten pulley belt



38-10

Reinforcements to the acrylic frame

Section 3.4-Circuit Schematic

=  StepperMotors

F‘,gf—l —~ r5r| = Circuit schematic

designed on
Fritzing software

Power for drivers
{5V and GND pins)

; —

Arduino Nano

TEEEE sTTeT SRTI RREET pooiadops
Stepper Driver

= Serialport
. connectedto PC

R A !'l':l =) B | T T | B
Digital Pins 8, 9,10, 11

12V Source

The arduino is powered by a 5V USB port connected to a computer. Connected by a
serial port, the computer executes the C++ program to determine the final destination of the ball
and sends the data to the arduino. Stepper motors require more voltage and current, so we used a
12V source from a wall outlet. The stepper motor drivers are connected to both the 5V on the

Arduino and the 12V source, on separate pins.
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Knobs on the driver adjust the current supplied to the stepper motors. An increase in the
amount of current results in more torque, at the expense of excess heat production. It is best to
adjust it until it is at its “sweet-spot”. During our first test, the stepper motor controlling the
X-axis would not move because of the heavy load on the rods and motor. After increasing the
current with an adjustable potentiometer, the motor could rotate with ease. However, the drivers
may overheat if the motors are used excessively.

“r

e a N\ LN N

Driver knob that controls current supplied to the stepper motor

In order to streamline the circuity and bundles of wires on the breadboard, we converted
the messy breadboard to a much more concise version on the Printed Circuit Board (PCB).
Designed on the computer using DesignSpark, we built our own breadboard, now on a thin 2 x 3
inch plate. This copper plate has integrated wires and channels to replace the wires. The
Arduino Nano board and the drivers are mounted onto the PCB using pin headers, so all the
electronics are consolidated. Soldering the PCB took a total of 3 hours.
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Breadboard is cluttered with wires Printed PCB is more concise and consolidated

Computer model on DesignSpark Soldered female pins on the custom-made
PCB

Section 4.0-Software
Section 4.1 - C++

The most complex part of the robot is tracking the ball’s mid-air motion. The computer
runs a C++ program developed by our team that takes the data from the two cameras, tracks the
ball, predicts the trajectory, and sends the coordinates of the final destination to the Arduino
board as Cartesian coordinates.

The C++ program uses OpenCV (Open Computer Vision) for image processing and
computer vision. Firstly, it converts the Red Green Blue (RGB) data of the camera to the Hue
Saturation Value (HSV) format. It then picks out pixels that match the minimum and maximum
HSV values, as calibrated to our ball, by applying a binary threshold. A window displays all
pixels that match this data as white while the background is black. The Hough Circle Transform
technique can then be used to detect the circle in the image. Finally, the program places an
indicator dot over the recognized ball to indicate detection of the ball.
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Converting from RGB to HSV and
applying a binary threshold

Once the computer detects the ball on each camera, it converts the pixel coordinates into
direction vectors relative to the camera, by utilizing a mapping and calibration technique we
came up with. These direction vectors are transformed into the world’s coordinate system by
rotating them through the angles of the camera's rotation, with rotation matrices. Hence, we
obtain two 3D lines, each comprised of a direction vector and a point on the line (the tip of the
camera). The 3D coordinates of the ball can then be triangulated, by finding the intersection of
these lines or the point where they are nearest.

Using multiple data points, the computer proceeds to make a line of best fit to predict the
ball’s trajectory and final destination. The coordinates are then sent through serial
communication through a USB cable to the Arduino Uno that turns data into motor movement.

One difficulty during software development was changing the code to use the
PlayStation™ Eye instead of standard webcams. The PlayStation™ Eye cameras are designed for
the Playstation console, so the computer cannot not register these cameras as standard web
cameras. We were forced to find alternate, commercial drivers from The Code Laboratories to
run a camera. These drivers were a hassle to use, but eventually worked.

Serial communication with the Arduino also proved to be much more of a problem than
originally expected. The first issue we faced was that updating the target destination of one
motor would reset the other motor’s. This was fixed fairly easily by rewriting the code in a
completely different way. The second issue, which was a lot more difficult to solve, was that
there was an inherent delay issue in the Arduino’s Serial.readString function. After identifying
the culprit, we switched to the Serial.read function which reads a single byte from the serial port.
Our code was modified so that it could read all the bytes individually, and convert them into our
desired format.
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Because we used two identical Playstation Eye™ cameras as opposed to standard
webcams, the computer could not use both cameras simultaneously. Although we found the
drivers to run one camera, the software would now not allow two cameras. Downloading a
commercial SDK from Code Laboratories allowed us to use both cameras simultaneously in
conjunction with our C++ program.

Section 4.2-Camera Calibration

Calibrating the cameras to the specific angles was crucial to the robot’s design. At first
we measured the orientation angles with an electronic level; however, measurement of three axis
of rotation was difficult without flat surfaces parallel to the cameras’ axis. Then, we centered an
object on the camera’s image display and measured the distance in the x, y, and z direction to the
object. This allowed us to find the exact angles of the cameras. These angles were then placed in
a rotation matrix in the C++ code to translate the angles based on the axis of the robot rather than
the axis of the camera. While this method did work, we found we achieved much more accurate
results when we changed the angle of the cameras to 45 degrees in one direction. Although we
had a smaller field of view, the better accuracy produced much better results.

In addition to entering the angles of the cameras into the program, we also had to perform
a calibration method to map the pixel coordinates to direction vectors relative to the camera. An
object of known size is held in front of the camera so that it covers the entire image, and the
distance from the camera to the object is measured. The ratio of camera distance to maximum
object size observable can then be found, which is another way of representing the field of view.
And finally, when the program is running in real-time, the ratio of the detected circle’s pixel
coordinates to the image resolution is multiplied by the maximum observable object size,
yielding a direction vector relative to the camera.

Section 4.3-Arduino

The Arduino code uses the coordinates from the computer through serial communication
and actuates the motors to intercept the ball. The coordinates from the computer are in units of
motor steps. One complete revolution is composed of 200 motor steps. Our first Arduino
program used these commands and processed them as strings from the serial port. The Arduino
then ran two methods to move each motor. Each method had a “for loop” for the total number of
steps that the motor had to move from its beginning location to its target location. This was
problematic because it ran each motor one at a time. Also, because the Arduino ran each motor
with a separate method, the Arduino could not take new commands from the computer while the
motors were running. This first iteration of the Arduino code was too slow to catch the ball and
the computer could not change the coordinates while the motors were running.
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Our second iteration ran the motors together by alternating between sending pulses to the
X and Y motors. Using “if loops,” we checked if there was a difference between the actual X
coordinate and the set X coordinate. If the positions did not correspond, we sent the step pin to
“HIGH.” We repeated this step for the Y motor. We finally set both step pins to “LOW” after a
delay of one microsecond. The Arduino read one pulse for each loop. Because the entirety of the
code was in one looping method, the Arduino reread the information coming from the serial port
before going through the motor “if statements.” This allowed the computer to update the
coordinates while the motors were running. The problem we ran into with this iteration was a
huge delay when the arduino began processing the new coordinates from the computer. This was
a major issue because any time the Arduino would receive a new coordinate it would stop the
motors to spend time reading the new information.

The third and final iteration reduced the time that the Arduino spent reading the new
coordinates. At first we tried reducing the latency times of the computer as well as the twenty
millisecond buffer the Arduino had built-in initially to make sure the final byte had been
received. We were not able to solve the problem with any of these methods because none of
these methods matched the long delay. We then began testing the time the Arduino took to
process each command in the program and realized that the delay was caused by reading the
String data type. We changed the code to read each byte individually and convert that into a
character. This not only left out the time it took the Arduino to read the serial data as a string, but
it also let us process each byte as it came in during the gap between bytes coming from the
computer. This made the Arduino much faster with a barely noticeable delay.

We finalized our code by making minor tweaks to reassure that the computer and
Arduino were communicating effectively as well as compensating for any slipping that occurred
during motor acceleration.

When the Arduino code is first starting it would pick up noise signals coming from the
computer and interpret them as coordinates, so we had the computer send “-”” and the Arduino
reply with “#” so we know when we can start sending commands. We also had the Arduino send
the coordinates it had received back to the computer for debugging purposes so the operator
knew that the computer and Arduino were communicating with each other. To reduce the effects
of motor and belt slipping, we added a speed ramp feature so that the motor does not accelerate
as quickly. We changed the delay between the “HIGH” and “LOW” stepper commands from 1
microsecond to a parabolic equation.

In the future, we plan to introduce bumper switches at the bottom most right corner so
know when the tray hits the outer bounds. When the crate moves to a location, the Arduino
assumes made it there without issue. If any slipping of the belt or motor occurs, the actual
position will be different than the Arduino position. The bumper switches counteract this by
acting as coordinate reset switches that hit the tray after each catch. When the tray hits the
switches, the Arduino will reset the coordinates to the known position.
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Section 5.0-Testing
Section 5.1-Software

To test the C++ program, during its beginning stages, we adjusted the acceptable HSV
values to identify the ball out of a crowded background. After this calibration, we began to print
the coordinates of the moving ball to the display screen to confirm usable data points.

Much later, we tested the serial communication between the Arduino and the computer
by sending coordinates and confirmations back and forth. This took trial and error because there
was a large delay of communication between the Arduino and the computer. We also realized
we needed to get rid of noise signals sent from the computer at the very beginning of running a
program.

After construction, we tested the triangulation of the cameras. First, we mirrored the
movements of the ball with the tray. We could visually observe the accuracy of the coordinates
the robot was receiving as well as the response time of the robot. We then had the computer print
out the real-time coordinates that matched the true position of the ball.

We then tested the prediction abilities of the ball by having the computer print the
predicted landing location of the projectile. When we knew the coordinates were getting close
we finished with throwing the ball.

Section 5.2-Arduino

To test the Arduino, we mainly ran the program with motors that were not hooked up to
the machine. We ran the motors without risk of straining the motor or breaking the frame. This
was how we discovered the flaws of our first and second code iterations. This also allowed us to
analyze the Arduino processing speed of coordinates and delay before movement. This is what
led us to change our second iteration to process bytes at a time rather than Strings.

Section 5.3- Hardware

Our first test of hardware was running the motors and the arduino alone. This allowed us
to ensure that the circuitry connecting the arduino to the stepper motor drivers and stepper
motors was correct as well as to calculate the final speed of the robot based on the rotational
velocity of the motor. When we were testing the motors we realized that when there was some
force against the motor as it was first starting out the motor would slip a couple steps. This was
important information to us because we needed accuracy in our motors and we may not have
noticed the slipping after the robot was put together. We later fixed this problem by ramping up
the speed.
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Section 8.0 Software

For the convenience of the reader, the lengthy code was not included in this report. It can
be found in our repository, hosted on the Github service:

https://github.com/BaranCODE/BallCatcher




